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Conductivity behavior of continuum percolation in restricted two-dimensional 
domains is simulated by considering systems of randomly distributed disks. The 
domain is restricted in that conducting objects are permitted to lie in only a 
portion of the domain. Such a restricted domain might better approximate some 
natural systems. Simulations of two-dimensional systems, based on three dis- 
tributions of local conductances, are examined and found to demonstrate a 
power-law behavior with conductivity exponents smaller than those arising in 
regular lattice and continuum percolation. 
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1. I N T R O D U C T I O N  

In recent years, there has been extensive study of percolation in both two- 
dimensional  and three-dimensional systems. III In particular, percolation 
theory has been used to analyze conductivity properties of disordered 
systems, and it has been suggested that these systems can characterize 
properties of many natural  systems, including porous and fractured 
media.(2. 31 

Percolation theory provides an expression relating the conductance of 
a system to the volumetric fraction or density of the conduct ing phase, in 
the form, for example, K oz ( N -  No)' where K is the overall system con- 
ductivity, N is ' the number  of conduct ing objects in the domain,  Nc is the 
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critical number of such objects for the onset of percolation, and t is a con- 
ductivity exponent specific to the quantity K. The universal conductivity 
exponents for random, isotropic systems are t ~ 1.3 in two-dimensional 
systems and t ,~ 2.0 in three-dimensional systemsJ 4~ 

Previous studies have analyzed nonuniversal exponents in both the 
hydraulic and electrical conductivity of various systems. 13'5,6~ In general, 
the focus has been on two issues--the description of local conductivities, 
and the conceptualization of the conducting phase geometry. It has been 
found, for example, that nonuniversal exponents may be expected to arise 
if the local conductivity distribution diverges as the local conductivities 
approach zero, with a critical behavior characterized by exponents that are 
always larger than the universal exponentsJ 5~ Monte Carlo simulation 
results for both electrical and hydraulic conductivity in two- and three- 
dimensional systems have been shown to be in agreement with these 
predictions.t3' 6) 

The manner in which conducting phase (pore space) geometry is con- 
structed can also lead to variations in behavior and to deviation of 
exponents from universal values. Broadly speaking, in terms of application 
to porous materials, there are two frequently applied constructions of pore 
space geometry: (1)"inverted random void" (or "inverted Swiss cheese") 
models, wherein the objects under consideration represent the pore 
spaces ,  ~3'6"7) and (2) "random void" (or "Swiss cheese") models, wherein 
the considered objects represent the solid grains of the matrixJ 3'8~ These 
constructions lead to different analytical developments and exponent 
values. However, as for the case of diverging distributions of local conduc- 
tivities, tS~ the various nonuniversal exponents that arise in both the random 
void and inverted random void constructions are larger than the universal 
exponents. 

It has also been shown that exponents either larger or smaller than the 
universal values--although always larger than unity--arise in anisotropic 
systems, depending on the direction of anisotropy in relation to the direc- 
tion of measurement, t2"9"~~ These results suggest that three-dimensional 
systems can yield two-dimensional exponents due to the geometry, not of 
the total system, but of the conducting system. 

In all studies to date of nonuniversal behavior, the geometry of the 
percolating system has been assumed to be two dimensional or three 
dimensional, with the conducting phase randomly filling any part of the 
two-dimensional or three-dimensional space. There is, however, increasing 
reference to the fact that many natural systems cannot be adequately 
described as two dimensional or three dimensional, two examples being 
rough surfaces and fractal porous media, t~l'~2~ This has led us to 
investigate percolation behavior of electrical and hydraulic conductivity in 
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a new class of systems--restricted domains--in which conducting elements 
are permitted to lie in only a portion of the domain. We ask whether such 
restricted systems exhibit classical percolation behavior, and if so, how the 
critical conductivity exponents are affected. 

2. THE RESTRICTED C O N T I N U U M  MODEL 

One of the usual methods ~6"7~ for analyzing electrical and hydraulic 
conductivity involves random (and unrestricted) placement of objects in a 
domain; a natural extension is to consider a similar percolation process in 
a restricted domain. 

As done previously, c6' 77 we consider an inverted random void model 
composed of conducting disks in a two-dimensional (unit square) domain. 
In such a model, a specified number of disks, below the percolation 
threshold, is first thrown into the domain. If two disks overlap, they are 
considered connected. The clusters that form are then considered to be the 
"blocking" phase (i.e., nonconducting regions). Once the prescribed num- 
ber of blocking disks has been thrown, disks representing the conducting 
phase are thrown randomly into the domain. Again, conducting phase 
disks can overlap and are then considered connected, but they are not per- 
mitted to overlap with any of the disks forming the blocking phase. If a 
conducting phase disk happens to overlap with a blocking phase disk, it is 
removed from the domain. The onset of percolation then occurs at the 
point where there are enough disks, No, to form a continuous path of 
connected (conducting) disks from one side of the domain to the other. 
An example realization of a percolating cluster of conducting disks in a 
restricted domain is illustrated in Fig. 1. 

For simplicity, disks forming both blocking and conducting phases are 
the same size. Realizations of blocker configurations that do not permit 
percolation clusters of conductors are excluded from the averaging. 
Obviously, other variations of this model, such as incorporation of a dis- 
tribution of object sizes and/or shapes, will lead to considerable variability 
in the overall system properties. 

In this inverted random void model, the fluid or electrical current 
flows through the "overlaps" of the nearest disks. The material that sur- 
rounds the disk is not permeable, and acts as an insulator to both fluid and 
electrical flow (Fig. 1). The local conductivity at the intersecting region of 
two disks (the so-called "neck") can then be correlated with the neck 
geometry, and is thus referred to as a continuum model. Each intersection 
(overlap) between two conducting disks is assigned its own (local) conduc- 
tivity. Three cases are considered: (i) all intersections have the same 
(hydraulic or electrical) conductivity, (ii) the individual (hydraulic or 
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Fig. 1. Illustration of a single realization of conducting disks (open circles) embedded in the 
restricted domain (solid circles), exactly at threshold. In this case, the number of blocking 
phase disks (NBlock) is 100, and the critical number of conducting disks is 1166. Note the 
"channeling" effect of the blockers on the conducting phase disks. 

electrical) conductivit ies are drawn from a log-normal  dis tr ibut ion,  and 
(iii) the hydraul ic  conductivi t ies  are determined by the degree of  over lap of  
the disks. 

F o r  case (iii), it is clear that  the value of the local conduct ivi ty  is 
determined by the narrowest  region (smallest  cross section) between two 
disks, which is the neck. It is a good approx imat ion  to assume that  the 
local conduct ivi ty  is determined by a cylinder a round  the neck, TM so that  
the local conduct ivi ty  depends  on only one variable  geometrical  parameter ,  
e, which is a measure  of  the degree of  over lap of  the disks. The H a g e n -  
Poiseuille law for the rate of  fluid flow through a capi l lary tube is given in 
two dimensions by Q=Apr2/(SpL) where Q is the rate of  fluid flow, r is 
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the radius of the capillary tube, p is the dynamic fluid viscosity, L is the 
length of the tube, and Ap is the pressure difference across the tube. t~3~ 
Then we may define the local hydraulic conductivity k-Q/Ap, where 
k-r2/(SpL) oc el/2.13~ In contrast, the electrical conductivity, given by 
k oc e~ 13~ scales as a constant, and is given by case (i). These expressions 
can be used to predict whether universal or nonuniversal exponents are 
expected to arise, t3'6~ Other details of the mathematical development and 
procedure can be found elsewhere, t6, 7~ 

In our simulations, conducting disks are thrown randomly into the 
domain until the onset of percolation. The critical number of conducting 
disks Nc is recorded for that particular realization, and the overall system 
conductivity is determined as follows. A unit discharge across the domain 
is assumed in one direction, and other faces are assumed impermeable. By 
writing a volumetric balance equation for every node, based on the various 
assumed local conductivities and application of Kirchhoff's law (which 
requires that the algebraic sum of the fluxes at a node equals zero), we 
obtain a set of linear algebraic equations with a symmetric coefficient 
matrix. These equations can be solved under the imposed boundary condi- 
tions to yield the pressure at each intersection. From the calculated 
pressure gradient across the inlet and outlet faces of the domain and the 
prescribed unit discharge across the inlet and outlet faces, the overall con- 
ductivity of the system is determined. Additional realizations of the system 
are then generated for larger numbers of conducting objects N over the 
range 1.01No to 2.0N~.. Finally, for each of the three cases of local conduc- 
tivity distributions, the calculated system conductivity is plotted against 
(N/Nc- 1 ), and the critical exponent t is determined. 

To the best of our knowledge, the conductivity behavior of such a 
restricted system has not been analyzed previously in the context of per- 
colation. The model raises a number of interesting possibilities, but two 
principal questions arise immediately: (i) does a power-law behavior still 
exist? and (ii) if so, what are the values of the exponents? We have com- 
pleted a number of calculations for disks in two-dimensional domains, and 
found that a power-law behavior indeed exists, with conductivity exponents 
that are near unity. 

3. RESULTS A N D  D ISCUSSION 

We present now the results of our Monte Carlo simulations calculat- 
ing hydraulic and electrical conductivity behavior in restricted two-dimen- 
sional domains. In order to make the best analysis possible, we obtained 
results based on averages of blocking and conducting phase realizations 
with percolation thresholds as large as computational constraints would 
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permit. In all cases, the exponents are based on averages of five combined 
blocking and conducting phase realizations of  the system, using a least 
squares estimate based on all the data. 

Calculations were carried out for a number  of  restricted domains in 
two dimensions. For  the benchmark calculation involving only one blocker 
(NBlock = 1 ), the conventional universal exponent of  t ~ 1.3 was recovered 
for the three cases of  local conductivities over a range of  sample sizes (No 
ranging from ,,~22,000 to ~57,000). This set of  realizations essentially 
assumed percolation in an unrestricted domain, since the effect of  the single 
blocker (in a sample containing thousands of objects) is negligible. Realiza- 
tions with larger numbers of  blocking phase disks (up to NBlock ~3000)  
for the case Nc ,~ 57,000 gave similar results for the exponent. These results 
are consistent with conventional lattice and cont inuum percolation theory, 
in that a limited number  of  blocking objects would not be expected to 
affect seriously the distribution of  the conducting phase disks. 

As the number  of  blocking disks is further increased, however, a drop 
in the conductivity exponents is found. For  the largest sample sizes we con- 
sidered (Nc~57,000) ,  the maximum number  of  blocking disks (over a 
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Fig. 2. Dependence of sample conductivity on proximity to the percolation threshold in the 
two-dimensional system, for Nr ~ 57, 000 and NBlock ~6000. For clarity, data are shown 
(average values and error bars of one standard deviation) for the case of constant local con- 
ductivity. The slope of the regression line is 0.99. 
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number of realizations) that will still permit generation of a percolating 
cluster of the conducting phase is NBlock ~ 6000. The calculated exponents 
for the three cases of local conductivity are all t - - 0 . 9 9 _  0.12 (see Fig. 2). 

As might be expected, changing the effective dimension of the con- 
nected, conducting phase changes the associated critical conductivity expo- 
nent. To demonstrate that the exponents found here are not an artifact of 
the finite sample size, similar calculations were made for smaller sample 
sizes. For samples with N c ~ 22,000 and N,. ~ 38,000, the same exponents 
(t ~ 0.99) are calculated. As Nc decreases, however, fewer points lie on the 
regression line with slope 0.99; for Nc ~ 22,000, points lie on the line only 
for N>~ 1.2No (in contrast to points much closer to Nc as shown in Fig. 2). 
Moreover, the confidence bounds (standard error estimate of the regres- 
sion) decreased (from +0.17 for the runs with Nc~22,000, to +0.12) as 
the sample size increased, due to decreased variability in the computed 
overall conductivity over the realizations. Similar arguments have been 
used previously to examine the influence of finite sample sizes on calculated 
exponents. ~ 1.6) 

It is well known that the critical percolation area fraction for ran- 
domly placed disks is ~b c ~ 0.68. t2~ In our case, for the largest sample sizes 
(Nc~57,000) with NBlock~6000,  the blocking phase area fraction is 
~b ,~ 0.12. However while the blocking phase is far from the critical area 
fraction (and thus well below the number of blocking disks required to pre- 
vent occurrence of a percolating cluster of the conducting phase), increas- 
ing NBlock further made infeasible the computational effort required (over 
a number of realizations) to permit percolating clusters of the conducting 
phase disks to form. 

To illustrate the influence of the blockers, even well below the critical 
area fraction for the blocking phase, Figs. 1 and 3 show realizations of 
embedded conducting disks in restricted and unrestricted domains, where 
the number of blocking disks is 100 and 0, respectively. Figure 3 represents 
a set of percolation clusters obtained in the usual unrestricted domain. The 
reduced density of disks, in comparison to Fig. 1, is readily apparent. The 
effect of the blocking phase is to channel the conducting disks, thus increas- 
ing the overall density of the objects. The lower conductivity exponent 
indicates a reduced rate of increase in electrical and hydraulic conductivity 
as additional conducting disks are added to the system. As the number of 
conducting disks increases, the number of overlaps increases, but no new 
conducting paths are established, i.e., additional conducting finite clusters 
are not joining the percolating cluster, so that the overall conductivity does 
not increase significantly. This means that only a few locations effectively 
control the flow. 
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Fig. 3. Illustration of a single realization of conducting disks (open circles) embedded in an 
unrestricted domain, exactly at threshold. In this case, the critical number of conducting disks 
is 637. Note the reduced density of the disks in comparison to Fig. 1. 

We also find that Nc increases with the number  of  blockers, because 
only a very limited domain is open to the conducting disks, and the prob- 
ability of throwing randomly a small number  of disks to form a percolating 
cluster is low, i.e., a much larger number  of disks must  be thrown in order 
to "cover" the reduced open domain. For  example, as shown in Fig. 1, 
N c = l 1 6 6  for a system with N B l o c k = 1 0 0 ;  in contrast,  if N B l o c k = 0  
for a similar system, the critical density drops significantly to N,.= 637 
(Fig. 3). Similar variability in Nc was found for all simulations discussed 
here. 
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4. CONCLUSIONS 

We have considered a new type of continuum percolation in a restric- 
ted domain, and analyzed conductivity behavior by simulating systems of 
randomly distributed disks. We find that power-law behavior indeed arises 
with two-dimensional conductivity exponents approximately equal to 
unity. This value is lower than the universal conductivity exponent in 
lattice and continuum percolation systems. 
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